A Novel Class of Oligonucleotide Analogues Containing 2'-0,3'-C-Linked [3.2.0]Bicycloarabinonucleoside Monomers: Synthesis, Thermal Affinity Studies, and Molecular Modeling

Nanna K. Christensen,[†] Michael Petersen,[†] Poul Nielsen,[†] Jens P. Jacobsen,[†] Carl Erik Olsen,[‡] and Jesper Wengel^{*,§}

Contribution from the Department of Chemistry, Odense University, DK-5230 Odense M, Denmark, Department of Chemistry, The Royal Danish Veterinary and Agricultural University, DK-1871 Frederiksberg C, Denmark, and Department of Chemistry, Center for Synthetic Bioorganic Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark

Received December 29, 1997

Abstract: Oligonucleotide analogues containing a novel 2'-0,3'-C-linked [3.2.0]bicyclonucleoside have been efficiently synthesized. Enhanced thermal stabilities of duplexes toward both RNA and DNA are reported for a 14-mer oligothymidylate containing 13 modifications and for a nonamer mixed sequence containing three modifications. These results and the results from molecular modeling reveal that strong conformational restriction of a monomer can be important for favorable duplex formation though the fixed conformation of the pentofuranose ring deviates from a North or South conformation.

Introduction

Despite the huge number of chemically modified oligonucleotides (ONs) that have been synthesized during the last years,¹ an ideal modification has not yet been obtained keeping, e.g., the requirements for potential pharmaceutical applications in mind. When designing novel ON analogues, we have identified the following chemical characteristics as desired: (a) absence of additional functional groups (which require protection during oligomerization), (b) efficient automated oligomerization (also in combination with unmodified DNA/RNA monomers), (c) good aqueous solubility of oligomers, (d) stability toward nucleases, and (e) enhanced binding affinity and specificity toward complementary DNA and/or RNA (also for partly modified mixed sequences). We consider ONs consisting of bicyclopentofuranose nucleotides as prime candidates for such optimized analogues.

Interesting results have been achieved for conformationally restricted ON analogues having a potential entropic advantage during duplex formation.² Stimulated by this and by our recent results³ on ONs containing [3.3.0]bicyclo nucleoside **1** (Figure 1) exhibiting strong RNA-selective recognition in an almost fully modified ON, we have synthesized the novel [3.2.0]bicyclo nucleoside 6 (Figure 1) and evaluated its influence on the properties of ONs.

(2) (a) Marquez, V. E.; Siddiqui, M. A.; Ezzitouni, A.; Russ, P.; Wang, J.; Wagner, R. W.; Matteucci, M. J. Med. Chem. 1996, 39, 3739. (b) Herdewijn, P. Liebigs Ann. Chem. 1996, 1337 and references cited herein.

(3) (a) Nielsen, P.; Pfundheller, H. M.; Wengel, J. Chem. Commun. 1997, 9, 825. (b) Nielsen, P.; Pfundheller, H. M.; Olsen, C. E.; Wengel, J. J. Chem. Soc., Perkin Trans. 1, 1997, 3423.

Results and Discussion

The bicyclic nucleoside 6 was synthesized in 12 steps from the known ulose 2^4 in an overall yield of 8.5% (Scheme 1). The first step was a stereoselective Grignard addition of a vinyl group followed by desilylation and benzylation affording furanose 3 in 68% yield. Acetolysis, acetylation and coupling with thymine using the silyl Hilbert-Johnson/Birkofer method as modified by Vorbrüggen et al.5 yielded after deacetylation the nucleoside 4 in 70% yield from 3. The configuration at the 2'-carbon atom was inverted using an anhydro approach⁶ by mesylation followed by treatment with aqueous base to give the desired arabino-configurated nucleoside. The double bond was oxidatively cleaved affording the 3'-C-hydroxymethyl nucleoside 5 in 22% yield from 4 after reduction. The primary hydroxy group of 5 was selectively mesylated, and the residue was treated with sodium hydride followed by debenzylation thus affording (1R,2R,4R,5S)-1-hydroxy-2-hydroxymethyl-4-(thymin-1-yl)-3,6-dioxabicyclo[3.2.0]heptane 6 in 80% yield from 5. The structure of compound 6 was verified by NMR experiments.

Odense University.

[‡] The Royal Danish Veterinary and Agricultural University.

[§] University of Copenhagen.

^{(1) (}a) Wagner, R. W. Nature 1994, 372, 333. (b) De Mesmaeker, A.; Häner, R.; Martin, P.; Moser, H. E. Acc. Chem. Res. 1995, 28, 366. (c) Akhtar, S.; Agrawal, S. Trends Pharmacol. Sci. 1997, 18, 12. (d) Freier, S. M.; Altmann, K.-H. Nucleic Acids Res. 1997, 25, 4429.

⁽⁴⁾ Yoshimura, Y.; Sano, T.; Matsuda, A.; Ueda, T. Chem. Pharm. Bull. 1988, 36, 162.

^{(5) (}a) Vorbrüggen, H.; Krolikiewicz, K.; Bennua, B. Chem. Ber. 1981, 114, 1234. (b) Vorbrüggen, H.; Höfle, G. Chem. Ber. 1981, 114, 1256.

⁽⁶⁾ Fox, J. J.; Miller, N. C. J. Org. Chem. 1963, 28, 936.

Scheme 1^a

6a

^{*a*} Key: (a) Vinylmagensium bromide, Et₂O, THF; (b) Bu₄NF, THF (75% for two steps, **2a**); (c) BnBr, NaH, DMF (91%, **3**); (d) 80% AcOH, then Ac₂O, pyridine (87%, **3a**); (e) thymine, *N*,*O*-bis(trimethylsilyl)acetamide, CH₃CN, Me₃SiOSO₂CF₃ (83%, **3b**); (f) MeONa, MeOH (97%, **4**); (g) MeSO₂Cl, pyridine (84%, **4a**); (h) NaOH, EtOH, H₂O (74%, **4b**); (i) NaIO₄, catalytic OsO₄, THF, H₂O, then NaBH₄, THF, H₂O (36%, **5**); (j) MeSO₂Cl, pyridine; (k) NaH, DMF (93% for two steps, **5a**); (l) H₂, Pd(OH)₂/C, EtOH (86%, **6**); (m) 4,4'-dimethox-ytrityl chloride (DMTCl), pyridine; (n) NC(CH₂)₂OP(Cl)N(ⁱPr)₂, CH₂Cl₂ (61% for two steps, **6a**).

Especially, the mutual NOE effects between H-5' and H-1", H-1' and H-2', and H-1' and H-4' (conventional nucleoside numbering used) were indicative of the assigned β -D-*arabino* configuration. The novel bicyclic nucleoside **6** was converted to the 5'-O-4,4'-dimethoxytrityl-protected derivative and eventually transformed into the corresponding 3'-O-phosphoramidite building block **6a** suitable for automated incorporation⁷ of the bicyclic monomer **X** into ONs.

Seven modified oligonucleotides containing monomer **X** were synthesized⁸ and their thermal stability was evaluated³ against that of complementary single-stranded DNA and RNA (Table 1). To allow comparison, the same oligothymidylate sequences as used in the evaluation of the bicyclic monomer **Y** derived from nucleoside 1^3 were synthesized. Stepwise coupling yield for the phosphoramidite **6a** was approximately 95% (12 min coupling) compared to >99% for unmodified deoxynucleoside phosphoramidites (2 min coupling). After cleavage from the

 Table 1.
 Melting Experiments of Modified Oligonucleotides^a

	complementary ssDNA		complementary ssRNA	
oligonucleotide	$T_{\rm m}/^{\rm o}{\rm C}$	$\Delta T_{ m m}/^{\circ}{ m C}$	$T_{\rm m}/^{\circ}{\rm C}$	$\Delta T_{\rm m}/^{\rm o}{\rm C}$
5'-T ₁₄	36.0	ref	34.0	ref
$5' - T_7 X T_6$	36.0	0	33.5	-0.5
$5' - T_6 X_2 T_6$	34.5	-1.5	33.0	-1.0
$5' - T_6 XT X T_5$	35.5	-0.5	32.5	-1.5
$5' - T_5 X_4 T_5$	31.5	-4.5	37.0	+3.0
$5' - T_3(TX)_4T_3$	35.5	-0.5	31.5	-2.5
5'- X ₁₃ T	58.0	+23.0	49.0	+15.0
5'-GTGATATGC	33.5	ref	30.5	ref
5'-GYGAYAYGC	26.0	-7.5	26.5	-4.0
5'-GXGAXAXGC	34.5	+1.0	34.5	+4.0

^{*a*} Measured at 260 nm in medium salt buffer: 1 mM EDTA, 10 mM Na₃PO₄, 140 mM NaCl, pH 7.2. Concentration of each strand 2.5 μ M; T = thymidine monomer; **X** = monomer derived from nucleoside **6**; **Y** = monomer derived from nucleoside **1**; G = 2'-deoxyguanosine monomer; A = 2'-deoxyadenosine monomer; C = 2'-deoxycytidine monomer; T_m = melting temperature determined as the maximum of the first derivative of the absorbance vs temperature curve; ΔT_m = change in T_m compared to the unmodified reference (ref).

solid support, deprotection, and reversed-phase purification (which includes 5'-end detritylation), the purity (>90%, capillary gel electrophoresis) and the composition (MALDI-MS) of all modified ONs were verified. Using a qualitative UV method described earlier,⁹ the stability of 5'- \mathbf{X}_{13} T toward snake venom phosphodiesterase (a 3'-exonuclease) was evaluated. Promisingly, no degradation of 5'- \mathbf{X}_{13} T was observed during the 60 min monitored, whereas the unmodified reference T₁₄ was completely degraded within 10 min.

The modified ONs (and unmodified reference strands) were mixed in a 1:1 ratio to complementary DNA or RNA strands assuming identical extinction coefficients of the modified and unmodified strands. The melting temperatures $(T_m \text{ values})$ were determined as the maxima of the first derivatives of the absorbance versus temperature curves (Table 1). The thermodynamic data for formation of the duplexes 5'- X_{13} T:dA₁₄ and 5'- X_{13} T:rA₁₄ were determined from the first derivatives of the melting curves assuming a two-state model for helix-coil transition.¹⁰ The calculated data (with the data for the corresponding reference duplex T₁₄:dA₁₄ in parentheses) for the duplex 5'- \mathbf{X}_{13} T:dA₁₄ are $\Delta H = -410$ kJ/mol (-398 kJ/mol) and $\Delta S = -1129$ J/mol K (-1170 J/mol K) leading to ΔG_{310} = -60 kJ/mol (-35 kJ/mol), and for the duplex 5'-X₁₃T:rA₁₄ (with the data for the corresponding reference duplex T₁₄:rA₁₄ in parentheses) $\Delta H = -362$ kJ/mol (-354 kJ/mol) and $\Delta S =$ -1013 J/mol K (-1039 J/mol K) leading to $\Delta G_{310} = -48$ kJ/ mol (-31 kJ/mol). These data indicate that the duplexes

⁽⁷⁾ Caruthers, M. H. Acc. Chem. Res. 1991, 24, 278.

⁽⁸⁾ For synthetic convenience, all the modified ONs of this study were synthesized on commercial supports carrying a natural 2'-deoxynucleoside.

⁽⁹⁾ Nielsen, P.; Kirpekar, F.; Wengel, J. Nucleic Acids Res. 1994, 22, 703.

⁽¹⁰⁾ Marky, L. A.; Breslauer, K. J. Biopolymers 1987, 26, 1601.

involving 5'- $X_{13}T$ are thermodynamically more stable than the unmodified reference duplexes. Apparently, this stabilization is of both enthalpic and entropic origin (gains in ΔH and diminished decreases in ΔS). The latter contribution can be explained by the preorganized structure of the bicyclopentofuranose rings in 5'- X_{13} T. The background for the apparent enthalpic advantage is presently unclear, but solvatization effects or increased base-stacking are possible explanations. Though ΔG_{310} gives a more valid measure of the thermodynamic stability of duplexes than the melting temperature $T_{\rm m}$, it has been shown that the experimental errors are larger for the former.¹¹ Consequently, we have in the remainder of this report used T_m values to estimate of the stability of the duplexes. Incorporation of X 1-4 times in 14-mer oligothymidylates induced decreases in the melting temperatures ($T_{\rm m}$ values) against both complementary DNA and RNA (0-4 °C decrease), the only exception being the ON 5'- $T_5X_4T_5$ showing an increase of 3 °C in T_m against RNA. All T_m values were increased compared to the values obtained with monomer Y.³ For 5'- $X_{13}T$, significant increases in thermal stability of duplexes toward both DNA and RNA were observed (+23.0 and +15.0 °C, respectively), contrary to the results obtained earlier for 5'- $Y_{13}T$ where stabilization (+13 °C) only of the duplex toward RNA was observed. The effect of the novel bicyclic monomer X as well as Y were likewise evaluated in mixed sequence nonamers containing three modifications. As depicted in the table, increased $T_{\rm m}$ values resulted with monomer X, more so for the duplex toward the RNA complement (+4 °C) than for the duplex toward the DNA complement (+1 °C), whereas decreased $T_{\rm m}$ values were obtained with monomer **Y**.

The data show that the modified ONs containing monomer **X** exhibit neither DNA- nor RNA-selective binding. Actually, an effect like the significant increased $T_{\rm m}$ values seen for 5'-**X**₁₃T toward *both DNA and RNA* has only be demonstrated earlier for few ON analogues, e.g., 2'-fluorophosphoramidates^{12a} and tricyclo-DNA.^{12b} The positive effects on the thermal stability of duplexes involving the mixed sequence are note-worthy not the least because they demonstrate that the monomer **X** is able to improve the thermal affinity in a context of unmodified deoxynucleotides.

In an attempt to understand the results depicted in Table 1, nucleosides **1** and **6** were evaluated using molecular modeling. The dynamic equilibrium of the furanose ring can be described by a two-state South/North model, with energy minima near pseudorotation angles of $P = 18^{\circ}$ (C3'-endo) for the North-conformer and $P = 162^{\circ}$ (C2'-endo) for the South conformer.¹³ For duplexes of the A-type, the nucleotides are normally found in a North conformation, while duplexes of the B-type normally contain nucleotides in a South conformation.¹⁴ Care should be taken, however, when describing nucleoside analogues as, e.g., bicyclo modifications can strain the furanose ring thus changing the positions of the energy minima rendering the South/North model useless. ¹H NMR spectra of both **1** and **6** were recorded at 500 MHz in the temperature range of -50 to $+50 \,^{\circ}$ C in steps of 20 °C. Neither of the two nucleosides showed variation

in the ${}^{3}J_{\rm HH}$ coupling constants in the bicyclic carbohydrate moieties within this temperature range. This indicates strongly that both bicyclic ring systems only exist in one conformation. If either of the nucleosides were in a fast equilibrium between two conformations, the relative populations of these conformations would be changed in the temperature interval investigated resulting in a change in ${}^{3}J_{\rm HH}$ coupling constants. Therefore, all molecular modeling was performed under the assumption of a single preferred conformer for both nucleosides 1 and 6. Details of model building and refinement protocols and molecular modeling are given in the Experimental Section. Molecular modeling revealed that the conformation of nucleosides 1 and 6 both are locked, although 1 apparently has a slight degree of conformational freedom. The preferred furanose conformation of **1** has a pseudorotation angle $P = 129^{\circ}$ corresponding to a C1'-exo conformation, whereas P for 6 was found to be 94°, indicative of an O4'-endo conformation. From a structural point of view especially the conformation found for nucleoside 6 is interesting. For an unmodified nucleoside, a pseudorotation angle of $P = 94^{\circ}$ corresponds to a "highenergy" conformation,^{13a} and it is therefore indicated that the four-membered ring strains the furanose ring thus changing the energy minima. Thus it is possible to engineer nucleoside analogues with unusual conformational preference of the furanose ring. The modeling studies partly explain the observed changes in $T_{\rm m}$ values upon binding of the modified ONs to complementary DNA or RNA. For the ON 5'-X13T, we anticipate that the modification **X** is able to force the duplexes into forms that are different from the A-form typical of RNA-RNA and RNA-DNA duplexes and the B-form adopted by most DNA-DNA duplexes. Thus, we ascribe the increases in thermal stability to the structural preorganization of the X monomers (and 5'- $X_{13}T$). It appears from the melting results that incorporation of several X monomers is needed to induce a favorable regular structure of the duplexes, i.e., the three X modifications are sufficient to stabilize the duplexes involving the nonamer. Contrary to the dual DNA and RNA recognition potential revealed here for 5'- $X_{13}T$, the corresponding ON containing the modification Y (derived from 1) showed no binding to dA₁₄.³ This difference may be caused by the different conformations of nucleosides 1 and 6 or can be a steric effect caused by the more bulky 2',3'-linked five-membered ring in nucleoside 1.

Conclusion

With reference to the points a-e listed in the Introduction as desired for a chemically modified ON analogue, the results described in this report underline the potential of conformationally restricted bicyclopentofuranose nucleotides as monomers in ON analogues. Especially, the recognition of both complementary DNA and RNA with enhanced thermal stabilities described herein for ONs containing monomer **X** suggests that this analogue should be further examined. The results also indicate that strong conformational restriction of a monomer can be important for favorable duplex formation even if the preorganization results in pentofuranose conformations deviating from the ones found for the unmodified nucleotides in natural duplexes.

Experimental Section

General. All reagents were obtained from commercial suppliers and were used without further purification. After any organic phase was dried with Na_2SO_4 , filtration was performed. The silica gel (0.040-0.063 mm) used for column chromatography was purchased

^{(11) (}a) Lesnik, E. A.; Guinosso, C. J.; Kawasaki, A. M.; Sasmor, H.; Zounes, M.; Cummins, L. L.; Ecker, D. J.; Cook, P. D.; Freier, S. M. *Biochemistry* **1993**, *32*, 7832. (b) Freier, S. M.; Lima, W. F.; Sanghvi, Y. S.; Vickers, T.; Zounes, M. C.; Cook, P. D.; Ecker, D. J. In *Gene Regulation: Biology of Antisense RNA and DNA*; Erickson, R. P., Izant, J. G., Eds.; Raven Press: New York, 1992; pp 95–107.

^{(12) (}a) Schultz, D. G.; Gryaznov, S. M. Nucleic Acids Res. 1996, 24, 2966. (b) Steffens, R.; Leumann, C. J. J. Am. Chem. Soc. 1997, 119, 11548. (13) (a) Altona, C.; Sundaralingam, M. J. Am. Chem. Soc. 1972, 94,

 ^{8205. (}b) Altona, C.; Sundaralingam, M. J. Am. Chem. Soc. 1973, 94, 2333.
 (14) Saenger, W. Principles of Nucleic Acid Structure, Springer Advanced

Texts in Chemistry; Springer-Verlag: New York, 1984.

from Merck. NMR spectra were recorded at 300 or 250 MHz for ¹H NMR, 62.9 MHz for ¹³C NMR, and 202.33 MHz for ³¹P NMR. The δ values are in ppm relative to tetramethylsilane as internal standard (¹H and ¹³C NMR) and relative to 85% H₃PO₄ as external standard (³¹P NMR). Assignments of NMR peaks are given according to standard nucleoside nomenclature and are based on two-dimensional NMR experiments. Coupling constants (*J*) are given in hertz.

1,2-O-Isopropylidene-3-C-vinyl-α-D-ribofuranose (2a). A solution of ulose 24 (6.05 g, 0.020 mol) in anhydrous THF (250 cm³) was stirred at 0 °C, and a 1 M solution of vinylmagnesium bromide in ether (44 cm³, 44 mmol) was added dropwise. The reaction mixture was stirred at room temperature for 2 h, whereupon saturated aqueous ammonium chloride (200 cm³) was added and extraction was performed using dichloromethane (3 \times 300 cm³). The combined extract was washed with brine $(3 \times 250 \text{ cm}^3)$ and dried (Na₂SO₄). The solvent was removed, and the residue was redissolved in anhydrous THF (225 cm³). To this mixture was added a 1 M solution of tetrabutylammonium fluoride in THF (22 cm³, 22 mmol), stirring at room temperature was continued for 20 min whereupon the mixture was evaporated under reduced pressure. The residue was dissolved in dichloromethane (500 cm³) and washed with a saturated solution of sodium hydrogencarbonate $(2 \times 200 \text{ cm}^3)$. The aqueous phase was extracted using continuous extraction for 12 h, and the combined extract was dried (Na₂SO₄) and evaporated. The residue was purified by silica gel column chromatography using dichloromethane/methanol (99:1, v/v) as eluent to give furanose **2a** as a white solid material (3.24 g, 75%): $\delta_{\rm H}$ (CDCl₃) 5.84 (1H, d, J 3.7, 1-H), 5.74 (1H, dd, J 11.0, 17.2, 1'-H), 5.52 (1H, dd, J 1.6, 17.1, 2'-H_a), 5.29 (1H, dd, J 1.3, 11.0, 2'-H_b), 4.21 (1H, d, J 3.7, 2-H), 3.98 (1H, t, J 5.7, 4-H), 3.68-3.64 (2H, m, 5-H_a, 5-H_b), 2.88 (1H, s, 3-OH), 1.99 (1H, t, J 6.3, 5-OH), 1.60 (3H, s, CH₃), 1.35 (3H, s, CH₃): δ_C (CDCl₃) 133.6 (C-1'), 116.2 (C-2'), 113.0 (C(CH₃)₂), 103.8 (C-1), 83.4, 82.4 (C-4, C-2), 79.6 (C-3), 61.3 (C-5), 26.5, 26.4 (CH₃).

3,5-Di-O-benzyl-1,2-O-isopropylidene-3-C-vinyl-a-d-ribofuranose (3). A 60% suspension of sodium hydride (w/w, 1.78 g, 44.5 mmol) in anhydrous DMF (50 cm³) was stirred at 0 °C, and a solution of furanose 2a (3.20 g, 14.8 mmol) in anhydrous DMF (35 cm³) was added dropwise over 30 min. The mixture was stirred at 50 °C for 1 h and subsequently cooled to 0 °C. A solution of benzyl bromide (5.3 mL, 44.5 mmol) in anhydrous DMF (5.3 cm³) was added dropwise, and the mixture was stirred at room temperature for 20 h. The reaction mixture was evaporated and redissolved in dichloromethane (300 cm³), washed with saturated aqueous sodium hydrogenearbonate (3 \times 200 cm³), and dried (Na₂SO₄). The solvents were removed under reduced pressure, and the residue was purified by silica gel column chromatography using petroleum ether/ethyl acetate (9:1, v/v) as eluent to give furanose **3** as a white solid material (5.36 g, 91%): $\delta_{\rm H}$ (CDCl₃) 7.40-7.26 (10H, m, Bn), 5.90 (1H, d, J 3.6, 1-H), 5.72 (1H, dd, J 11.1, 17.9, 1'-H), 5.41 (1H, dd, J 0.7, 11.1, 2'-Ha), 5.30 (1H, dd, J 0.5, 17.8, 2'-H_b), 4.70-4.45 (6H, m, Bn, 2-H, 4-H), 3.69 (1H, dd, J 2.6, 10.8, 5-H_a), 3.50 (1H, dd, J 7.9, 10.9, 5-H_b), 1.64 (3H, s, CH₃), 1.40 (3H, s, CH₃); δ_C (CDCl₃) 138.6, 138.3 (Bn), 134.5 (C-1'), 128.3–127.4 (Bn), 118.2 (C-2'), 112.9 (C(CH₃)₂), 104.7 (C-1), 84.7, 81.1, 81.0 (C-2, C-3, C-4), 73.3 (C-5), 69.4, 67.0 (Bn), 26.8, 26.6 (CH₃).

1,2-Di-O-acetyl-3,5-di-O-benzyl-3-C-vinyl-α,β-D-ribofuranose (3a). A solution of furanose 3 (4.40 g, 11.1 mmol) in 80% aqueous acetic acid (50 cm3) was stirred at 90 °C for 8 h. The solvents were removed, and the residue was coevaporated with 99% ethanol (3 \times 25 cm³), toluene $(3 \times 25 \text{ cm}^3)$ and anhydrous pyridine $(2 \times 25 \text{ cm}^3)$, and redissolved in anhydrous pyridine (20 cm³). Acetic anhydride (17 cm³) was added, and the solution was stirred at room temperature for 48 h. The reaction was quenched with ice-cold water (100 cm³) and extracted with dichloromethane $(2 \times 100 \text{ cm}^3)$. The combined extract was washed with saturated aqueous sodium hydrogenearbonate (3 \times 100 cm³) and dried (Na₂SO₄). The solvent was evaporated, and the residue was purified by silica gel column chromatography using petroleum ether/ethyl acetate (4:1, v/v) as eluent to give furanose 3a as an oil (4.27 g, 87%, $\alpha:\beta \approx 1:1$). δ_{C} (CDCl₃) 169.9, 169.8 (C=O), 139.0, 138.6, 138.0, 137.8 (Bn), 133.3, 132.4 (C-1'), 128.4-126.8 (Bn), 119.6, 119.5 (C-2'), 99.5, 94.0 (C-1), 85.4, 85.0, 84.3, 83.6, 77.7, 73.6, 73.5, 73.3, 70.0, 69.2, 67.5, 67.2 (C-2, C-3, C-4, C-5, Bn), 21.0, 20.9, 20.6, 20.4 (CH₃).

1-(2-O-Acetyl-3,5-di-O-benzyl-3-C-vinyl-\$B-D-ribofuranosyl)thymine (3b). To a stirred solution of compound 3a (4.24 g, 9.6 mmol) and thymine (2.43 g, 19.3 mmol) in anhydrous acetonitrile (100 cm³) was added N,O-bis(trimethylsilyl)acetamide (11.9 cm³, 48.1 mmol). The reaction mixture was stirred at reflux for 30 min. After cooling to 0 °C, trimethylsilyl triflate (3.2 cm³, 16.4 mmol) was added dropwise, and the solution was stirred for 24 h at room temperature. The reaction was quenched with cold saturated aqueous sodium hydrogencarbonate (100 cm³), and the resulting mixture was extracted with dichloromethane $(3 \times 50 \text{ cm}^3)$. The combined extract was washed with saturated aqueous sodium hydrogencarbonate (2 \times 50 cm³) and brine (2 \times 50 cm³) and dried (Na₂SO₄). The extract was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography using dichloromethane/methanol (99:1, v/v) as eluent to give nucleoside **3b** as a white foam (4.03 g, 83%): $\delta_{\rm H}$ (CDCl₃) 8.78 (1H, br s, NH), 7.75 (1H, s, 6-H), 7.38-7.26 (10 H, m, Bn), 6.49 (1H, d, J 8.1, 1'-H), 5.99-5.88 (2H, m, 2'-H and 1"-H), 5.54-5.48 (2H, m, 2"-Ha, 2"-Hb), 4.91-4.50 (4H, m, Bn), 4.34 (1H, s, 4'-H), 3.80 (1H, m, 5'-Ha), 3.54 (1H, m, 5'-Hb), 2.11 (3H, s, COCH3), 1.48 (3H, s, CH3); $\delta_{\rm C}$ (CDCl₃) 170.1 (C=O), 163.8 (C-4), 151.0 (C-2), 138.9, 136.9 (Bn), 136.1 (C-6), 132.0 (C-1"), 128.7, 128.5, 128.2, 127.8, 127.7, 127.5, 127.5, 127.1 (Bn), 120.7 (C-2"), 111.3 (C-5), 85.4 (C-1'), 85.2 (C-3'), 84.3 (C-4'), 76.0 (C-2'), 73.7 (C-5'), 69.3, 67.6 (Bn), 20.6 (COCH₃), 11.7 (CH₃). Anal. Found: C, 66.3; H, 6.0; N, 5.1. Calcd for C₂₈H₃₀N₂O₇: C, 66.4; H, 6.0; N, 5.5.

1-(3,5-Di-O-benzyl-3-C-vinyl-β-D-ribofuranosyl)thymine (4). To a stirred solution of nucleoside 3b (3.90 g, 7.7 mmol) in anhydrous methanol (40 cm³) was added sodium methoxide (0.83 g, 15.4 mmol). The mixture was stirred at room temperature for 42 h and then neutralized with dilute aqueous hydrochloric acid. The mixture was extracted with dichloromethane $(2 \times 150 \text{ cm}^3)$, and the combined extract was washed with saturated aqueous sodium hydrogencarbonate $(3 \times 100 \text{ cm}^3)$ and dried (Na₂SO₄). The solvent was removed under reduced pressure to give nucleoside **4** as a white foam (3.48 g, 97%): $\delta_{\rm H}$ (CDCl₃) 8.89 (1H, br s, NH), 7.60 (1H, d, J 0.9, 6-H), 7.36–7.26 (10H, m, Bn), 6.23 (1H, d, J 7.8, 1'-H), 5.98 (1H, dd, J 11.2, 17.7, 1"-H), 5.66 (1H, d, J 17.7, 2"-H_a), 5.55 (1H, d, J 11.5, 2"-H_b), 4.75-4.37 (6H, m, 2'-H, 4'-H, Bn), 3.84 (1H, dd, J 2.7, 10.8, 5'-Ha), 3.58 (1H, d, J 11.2, 5'-H_b), 3.23 (1H, d, J 10.6, 2'-OH), 1.50 (3H, s, CH₃); δ_C (CDCl₃) 163.7 (C-4), 151 3 (C-2), 138.0, 136.9 (Bn), 136.0 (C-6), 131.2 (C-1"), 128.8, 128.6, 128.3, 127.8, 127.7, 127.3 (Bn), 120.7 (C-2"), 111.3 (C-5), 87.3 (C-1'), 84.6 (C-3'), 81.4 (C-4'), 78.0 (C-2'), 73.7 (C-5'), 70.0, 66.4 (Bn), 11.8 (CH₃). Anal. Found: C, 66.8; H, 6.2; N, 5.9. Calcd for C₂₆H₂₈N₂O₆: C, 67.2; H, 6.1; N, 6.0.

 $1-(3,5-\text{Di-}\textit{O}-\text{benzyl-}2-\textit{O}-\text{methanesulfonyl-}3-\textit{C}-\text{vinyl-}\beta-\text{D}-\text{ribofura-}$ nosyl)thymine (4a). Nucleoside 4 (2.57 g, 5.53 mmol) was dissolved in anhydrous pyridine (18 cm³) and cooled to 0 °C. Methanesulfonyl chloride (1.28 cm³, 16.6 mmol) was added dropwise, and the mixture was stirred at room temperature for 30 min. The reaction was quenched with water (5 cm³), and the resulting mixture was extracted with dichloromethane $(3 \times 80 \text{ cm}^3)$. The combined extract was washed with saturated aqueous sodium hydrogenearbonate (3 \times 120 cm³) and dried (Na₂SO₄). The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography using dichloromethane/methanol (99:1, v/v) as eluent to give nucleoside 4a as a yellow foam (2.53 g, 84%): $\delta_{\rm H}$ (CDCl₃) 8.92 (1H, br s, NH), 7.71 (1H, d, J 1.4, 6-H), 7.41-7.28 (10H, m, Bn), 6.57 (1H, d, J 7.8, 1'-H), 5.99-5.61 (4H, m, 2'-H, 1"-H and 2"-Ha, 2"-Hb), 4.86-4.50 (4H, m, Bn), 4.37 (1H, dd, J 1.5, 2.4, 4'-H), 8.82 (1H, dd, J 2.6, 11.0, 5'-Ha), 3.55 (1H, dd, J 1.2, 11.0, 5'-H_b), 3.02 (3H, s, CH₃), 1.47 (3H, d, J 1.1, CH₃); δ_C (CDCl₃) 163.7 (C-4), 151.5 (C-2), 138.7, 136.7 (Bn), 135.7 (C-6), 130.9 (C-1"), 128.8, 128.5, 128.4, 127.6, 127.0 (Bn), 121.8 (C-2"), 111.9 (C-5), 85.1 (C-1'), 84.5 (C-3'), 84.0 (C-4'), 80.7 (C-2'), 73.7 (C-5'), 69.2, 67.7 (Bn), 38.9 (CH₃), 11.8 (CH₃).

1-(3,5-Di-O-benzyl-3-C-vinyl-\beta-D-arabinofuranosyl)thymine (4b). A solution of nucleoside **4a** (2.53 g, 4.66 mmol) in a mixture of ethanol (50 cm³), water (50 cm³), and 1 M aqueous sodium hydroxide (15 cm³) was stirred under reflux for 16 h. The mixture was neutralized using dilute aqueous hydrochloric acid, the solvent was evaporated under reduced pressure, and the residue was extracted with dichloromethane (3 × 120 cm³). The combined extract was washed with saturated aqueous sodium hydrogencarbonate (3 × 150 cm³) and dried (Na₂-SO₄). The solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography using dichloromethane/methanol (99:1) as eluent to give **4b** as a white foam (1.61 g, 74%): $\delta_{\rm H}$ (CDCl₃) 9.89 (1H, br s, NH), 7.50 (1H, d, *J* 1.1, 6-H), 7.41–7.26 (Bn), 6.28 (1H, d, *J* 2.8, 1'-H), 6.05 (1H, dd, *J* 11.1, 17.9, 1"-H), 5.58–5.50 (2H, m, 2"-H_a), 2"-H_b), 4.98 (1H, d, *J* 9.0, 2'-OH), 4.64–4.31 (6H, m, 2'-H, 4'-H, Bn), 3.73 (2H, m, 5'-H_a, 5'-H_b), 1.73 (1H, d, *J* 0.6, CH₃); $\delta_{\rm C}$ (CDCl₃) 165.1 (C-4), 150.5 (C-2), 138.4, 138.0, 136.7 (C-6, Bn), 130.4 (C-1"), 128.8, 128.6, 128.5, 128.1, 128.0, 127.8 (Bn), 120.6 (C-2"), 108.1 (C-5), 88.6 (C-1'), 87.9 (C-3'), 87.2 (C-4'), 73.7 (C-2'), 71.8 (C-5'), 69.7, 66.3 (Bn), 12.3 (CH₃). Anal. Found: C, 66.8; H, 6.2; N, 5.9. Calcd for C₂₆H₂₈N₂O₆: C, 67.2; H, 6.1; N, 6.0.

1-(3,5-Di-O-benzyl-3-C-(hydroxymethyl)-β-D-arabinofuranosyl)thymine (5). To a solution of nucleoside 4b (2.00 g, 4.31 mmol) in a mixture of THF (15 cm³) and water (15 cm³) were added sodium periodate (2.76 g, 12.9 mmol) and a 2.5% solution of osmium tetraoxide in tert-butyl alcohol (w/w, 0.54 cm³, 43 µmol). The reaction was stirred at room temperature for 18 h, quenched with water (50 cm³), and the mixture was extracted with dichloromethane $(2 \times 100 \text{ cm}^3)$. The combined extract was washed with saturated aqueous sodium hydrogencarbonate (3 \times 75 cm³), dried (Na₂SO₄), and evaporated under reduced pressure. The residue was redissolved in a mixture of THF (15 cm³) and water (15 cm³), and sodium borohydride (488 mg, 12.9 mmol) was added. The reaction mixture was stirred at room temperature for 1 h, water (50 cm³) was added, and the mixture was extracted with dichloromethane $(2 \times 100 \text{ cm}^3)$. The combined organic phase was washed with saturated aqueous sodium hydrogenearbonate (3 \times 75 cm³) and dried (Na₂SO₄). The solvent was removed and the residue was purified by silica gel column chromatography using dichloromethane/methanol (98:2, v/v) as eluent to give nucleoside 5 as a white foam (732 mg, 36%): $\delta_{\rm H}$ (CDCl₃) 11.09 (1H, br s, NH), 7.41 (1H, d, J 1.0, 6-H), 7.38-7.26 (Bn), 6.16 (1H, d, J 2.6, 1'-H), 5.12 (1H, d, J 5.4, 2'-OH), 4.66-4.29 (6H, m, 2'-H, 4'-H, Bn), 4.02-3.96 (2H, m, 1"-H_a, 1"-H_b), 3.90 (1H, dd, J 7.2, 9.7, 5'-H_a), 3.79 (1H, dd, J 5.6, 9.7, 5'-H_b), 2.49 (1H, t, J 6.4, 1"-OH), 1.68 (3H, d, J 0.6, CH₃); δ_C (CDCl₃) 166.1 (C-4), 150.6 (C-2), 139.0, 137.9, 137.0 (C-6, Bn), 128.7, 128.6, 128.4, 128.3, 128.0 (Bn), 107.5 (C-5), 88.2 (C-1'), 88.1 (C-3'), 84.2 (C-4'), 73.7 (C-5'), 72.1 (C-2'), 69.3, 65.4 (Bn), 58.6 (C-1"), 12.3 (CH₃).

(1R,2R,4R,5S)-1-(Benzyloxy)-2-(benzyloxymethyl)-4-(thymin-1yl)-3,6-dioxabicyclo[3.2.0]heptane (5a). A solution of compound 5 (2.26 g, 4.83 mmol) in anhydrous pyridine (20 cm^3) was stirred at -40°C, and a solution of methanesulfonyl chloride (0.482 cm³, 4.83 mmol) in anhydrous pyridine (10 cm³) was added. The reaction mixture was stirred at room temperature for 17 h, water (50 cm³) was added, and the mixture was extracted with dichloromethane $(2 \times 100 \text{ cm}^3)$. The combined organic phase was washed with saturated aqueous sodium hydrogencarbonate (3 \times 100 cm³), dried (Na₂SO₄), and evaporated under reduced pressure. The residue was purified by silica gel column chromatography using dichloromethane/methanol (99:1, v/v) as eluent to give an intermediate which after evaporation of the solvents was dissolved in anhydrous DMF (15 cm³). This solution was added dropwise to a suspension of 60% sodium hydride (461 mg, 11.5 mmol) in anhydrous DMF (15 cm³) at 0 °C. The reaction was stirred at room temperature for 30 min and then quenched with water (60 cm³). After neutralization with dilute aqueous hydrochloric acid, dichloromethane (150 cm³) was added, the resulting mixture was washed with saturated aqueous sodium hydrogencarbonate ($3 \times 100 \text{ cm}^3$), and the separated organic phase was dried (Na₂SO₄). The solvents were evaporated, and the residue was purified by silica gel column chromatography using dichloromethane/methanol (99:1, v/v) as eluent to give nucleoside 5a as a white foam (2.00 g, 93%): $\delta_{\rm H}$ (CDCl₃) 9.13 (1H, br s, NH), 7.55 (1H, d, J 1.4, 6-H), 7.40-7.26 (Bn), 5.99 (1H, d, J 2.5, 1'-H), 5.30 (1H, d, J 2.7, 2'-H), 4.88-4.57 (6H, m, 1"-H_a, 1"-H_b, Bn), 4.22-4.19 (1H, m, 4'-H), 3.92 (1H, dd, J 6.2, 10.8, 5'-H_a), 3.82 (1H, dd, J 3.7, 10.8, 5'-H_b), 1.91 (3H, d, J 1.3, CH₃); δ_C (CDCl₃) 163.8 (C-4), 150.3 (C-2), 137.6 (C-6), 137.5, 137.0 (Bn), 128.7, 128.6, 128.2, 128.0, 127.8, 127.3 (Bn), 109.8 (C-5), 85.7 (C-3'), 84.1 (C-1'), 83.5 (C-4'), 79.7 (C-1"), 73.9 (C-2'), 73.6 (C-5'), 68.6, 67.8 (Bn), 12.4 (CH₃); FAB m/z 451 $[M + H]^+$, 473 $[M + Na]^+$. Anal. Found: C, 66.3; H, 5.9; N, 6.1. Calcd for $C_{25}H_{26}N_2O_6$: C, 66.7; H, 5.8; N, 6.2.

(1R,2R,4R,5S)-1-Hydroxy-2-(hydroxymethyl)-4-(thymin-1-yl)-3,6dioxabicyclo[3.2.0]heptane (6). To a stirred solution of nucleoside 5a (180 mg, 0.40 mmol) in ethanol (3 cm³) was added 10% palladium hydroxide over carbon (90 mg). The mixture was degassed several times with argon and placed under a hydrogen atmosphere. The reaction mixture was stirred at room temperature for 6 h and then filtered through Celite. The filtrate was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography using dichloromethane/methanol (96:4, v/v) as eluent to give nucleoside 6 as a white solid material (92 mg, 86%): $\delta_{\rm H}$ (CD₃OD) 7.79 (1H, d, J 1.2, 6-H), 5.91 (1H, d, J 2.5, 1'-H), 4.96 (1H, d, J 2.5, 2'-H), 4.92 (1H, d, J 7.4, 1"-H_a), 4.58 (1H, dd, J 0.9, 7.4, 1"-H_b), 3.98 (1H, dd, J 7.3, 12.8, 5'-Ha), 3.87-3.82 (2H, m, 4'-H, 5'-Hb), 3.34 (2H, s, 3'-OH, 5'-OH), 1.87 (3H, d, J 1.3, CH₃); δ_C (CD₃OD) 166.5 (C-4), 152.1 (C-2), 140.1 (C-6), 110.1 (C-5), 91.2 (C-2'), 85.1 (C-1'), 84.0 (C-4'), 79.6 (C-3'), 78.6 (C-1"), 61.1 (C-5'), 12.3 (CH₃).

(1R,2R,4R,5S)-1-(2-Cyanoethoxy(diisopropylamino)phosphinoxy)-[3.2.0]heptane (6a). To a solution of diol 6 (250 mg, 0.925 mmol) in anhydrous pyridine (4 cm³) was added 4,4'-dimethoxytrityl chloride (376 mg, 1.11 mmol), and the mixture was stirred at room temperature for 18 h. The reaction was quenched with methanol (1.5 cm³), and the mixture was evaporated under reduced pressure. A solution of the residue in dichloromethane (30 cm3) was washed with saturated aqueous sodium hydrogencarbonate (3 \times 20 cm³), dried (Na₂SO₄), and evaporated. The residue was purified by silica gel column chromatography using dichloromethane/methanol (98:2, v/v) as eluent to give an intermediate which was dissolved in anhydrous dichloromethane (7.0 cm³). N,N-Diisopropylethylamine (0.64 cm³, 3.70 mmol) followed by 2-cyanoethyl N,N-diisopropylphosphoramidochloridite (0.41 cm³, 1.85 mmol) were added, and the mixture was stirred at room temperature for 25 h. The reaction was quenched with methanol (3 cm³), and the mixture was dissolved in ethyl acetate (70 cm³), washed with saturated aqueous sodium hydrogenearbonate (3 \times 50 cm³) and brine $(3 \times 50 \text{ cm}^3)$, dried (Na₂SO₄), and was evaporated under reduced pressure. The residue was purified by silica gel column chromatography using petroleum ether/dichloromethane/ethyl acetate/triethylamine (100: 45:45:10, v/v/v/v) as eluent. The residue obtained was dissolved in toluene (2 cm³) and precipitated under stirring from petroleum ether at -50 °C. After evaporation of the solvents, the residue was coevaporated with anhydrous acetonitrile $(4 \times 5 \text{ cm}^3)$ to give **6a** as a white foam (436 mg, 61%): ³¹P NMR (CDCl₃) 146.6.

Oligonucleotide Synthesis and Analysis. Oligonucleotide analogues were synthesized on a 0.2 μ mol scale, using unmodified 3'-*O*-(2-cyanoethoxy(diisopropylamino)phosphino)-5'-*O*-4,4'-dimethoxytrityl 2'-deoxynucleosides and amidite **6a** (stepwise coupling yield ~95%, 12 min coupling), as described earlier.³ Matrix-assisted laser desorption mass spectra were recorded to verify the molecular weight and monomer composition of all modified ONs. Capillary gel electrophoresis was performed to verify the purity (>90%) of all modified ONs. MALDI-MS [M - H]⁻: 4225.3 (5'-T₇XT₆ calcd 4224.8); 4252.6 (5'-T₆X₂T₆ calcd 4252.8); 4251.0 (5'-T₆XTXT₅ calcd 4252.8); 4309.1 (5'-T₅X₄T₅ calcd 4308.8); 4308.7 (5'-T₃(XT)₄T₃ calcd 4308.8); 4560.6 (5'-X₁₃T calcd 4560.9); 2838.2 (5'-GXGAXAXGC calcd 2837.9).

Duplex Meltings and 3'-Exonucleolytic Stability Studies. These experiments were performed as previously described.⁹

Molecular Modeling. NMR Spectroscopy. 1D¹ H NMR spectra (CD₃OD) were recorded at 500 MHz in the temperature range of -50 to +50 °C in steps of 20 °C for both nucleotides 1 and 6. Model Building and Refinement Protocols. The initial models of 1 and 6 were created with the Biopolymer module of INSIGHTII (version 95.0, Biosym/MSI, San Diego, CA). Potentials were assigned by the AMBER force field and partial charges were calculated in INSIGHTII. Molecular modeling was done using DISCOVER (version 95.0, Biosym/MSI, San Diego, CA). The refinement methods employed were restrained energy minimization (rEM) and restrained molecular dynamics (rMD). The rEM protocol consisted of 500 steps of steepest descent followed by conjugate gradient until a maximum rms derivative of 0.001 Å. The rMD procedure consisted of an initial energy minimization

followed by 28 ps of rMD. Dynamics were performed at 600 K for 4 ps, followed by cooling to 200 K in 50 K steps of 3 ps each. Finally, the structure was energy minimized to a maximum rms derivative of 0.01 Å. A distance dependent dielectric constant, $\epsilon = 4r$, was employed throughout the calculations. Experimentally derived angle restraints were incorporated into the refinement procedures as pseudo energy terms

$$E_{\exp} = \begin{cases} k_1 (\theta - \theta_1)^2 & \text{when } \theta_1 > \theta \\ 0 & \text{when } \theta_2 \ge \theta \ge \theta_1 \\ k_2 (\theta - \theta_2)^2 & \text{when } \theta_2 > \theta \end{cases}$$

where k_1 and k_2 are the force constants and θ_1 and θ_2 are the lower and upper angle bounds as determined by the experimental data. Upper and lower force constants of 50 kcal/(mol Å²) were employed. Molecular Modeling of Nucleoside 6. The $J_{1'2'}$ coupling constant was determined to 2.5 Hz. This ${}^{3}J_{\rm HH}$ coupling constant was transferred to a dihedral angle (H1'-C1'-C2'-H2') by the Karplus equation ${}^{3}J_{\rm HH} =$ $10.2 \cos^2 \theta - 0.8 \cos \theta$.¹⁵ This quadratic equation yields two solutions, and both angles were evaluated. One of them resulted in a highly strained conformation which consequently was discarded. The dihedral angle selected was incorporated into the refinement procedure as a flat well potential with a flat well width of 4.0° to reflect the approximate nature of the Karplus equation. To sample conformational space adequately, 24 starting structures with furanose ring conformations of $P = 15^{\circ}n$, n = 0, ..., 23 were constructed. When subjected to rEM, all starting structures converged to just one family of structures with P = $94^{\circ} \pm 1^{\circ}$ (O4'-endo conformation). Molecular Modeling of Nucleo-

(15) Davies, D. B. Prog. NMR Spectrosc. 1978, 12, 135.

side 1. The $J_{1'2'}$ coupling constant was determined to 4.3 Hz. Furthermore, the four ${}^{3}J_{\rm HH}$ coupling constants between the H1"a, H1"b, H2"a, and H2"b protons in the other ring could also be determined by spectral simulation of the resulting ABMX system. Thus, a total of five dihedral angle restraints could be included in the structure refinement via the Karplus equation stated above. All restraints were represented by a flat well potential. For the furanose dihedral angle, a well width of 4.0° was employed while a broader potential well of 30° was chosen for the dihedral angle restraints in the other ring. A slightly different modus operandi was chosen for this nucleoside. Twenty-four structures corresponding to furanose ring conformations of P = 15° n, n = 0, ..., 23 were constructed, and scrutiny of these structures revealed that the experimental coupling constants could only be reproduced with a ring conformation near $P = 135^{\circ}$. Consequently, this structure was chosen as starting structure for further refinement consisting of rMD as described above. Twenty final structures were generated which all converged to one family of structures with P = $129^{\circ} \pm 4^{\circ}$ (C1'-exo conformation).

Acknowledgment. The Danish Natural Science Research Council, The Danish Technical Research Council, and Exiqon A/S, Denmark, are thanked for financial support.

Supporting Information Available: ¹³C NMR spectra for compounds **2a**, **3**, **3a**, **3b**, **4**, **4a**, **4b**, **5**, **5a**, and **6** and a figure showing the preferred conformations for nucleosides **1** and **6** as found by molecular modeling (11 pages, print/PDF). See any current masthead page for ordering information and Web access instructions.

JA9743598